Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 10(3): 1000-1022, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38367280

RESUMEN

In this study, we identified three novel compound classes with potent activity against Plasmodium falciparum, the most dangerous human malarial parasite. Resistance of this pathogen to known drugs is increasing, and compounds with different modes of action are urgently needed. One promising drug target is the enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) of the methylerythritol 4-phosphate (MEP) pathway for which we have previously identified three active compound classes against Mycobacterium tuberculosis. The close structural similarities of the active sites of the DXPS enzymes of P. falciparum and M. tuberculosis prompted investigation of their antiparasitic action, all classes display good cell-based activity. Through structure-activity relationship studies, we increased their antimalarial potency and two classes also show good metabolic stability and low toxicity against human liver cells. The most active compound 1 inhibits the growth of blood-stage P. falciparum with an IC50 of 600 nM. The results from three different methods for target validation of compound 1 suggest no engagement of DXPS. All inhibitor classes are active against chloroquine-resistant strains, confirming a new mode of action that has to be further investigated.


Asunto(s)
Antimaláricos , Malaria Falciparum , Tiazoles , Humanos , Plasmodium falciparum , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Cloroquina , Antimaláricos/farmacología , Antimaláricos/química
2.
J Biol Chem ; 299(9): 105152, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567475

RESUMEN

The ESKAPE bacteria are the six highly virulent and antibiotic-resistant pathogens that require the most urgent attention for the development of novel antibiotics. Detailed knowledge of target proteins specific to bacteria is essential to develop novel treatment options. The methylerythritol-phosphate (MEP) pathway, which is absent in humans, represents a potentially valuable target for the development of novel antibiotics. Within the MEP pathway, the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXPS) catalyzes a crucial, rate-limiting first step and a branch point in the biosynthesis of the vitamins B1 and B6. We report the high-resolution crystal structures of DXPS from the important ESKAPE pathogens Pseudomonas aeruginosa and Klebsiella pneumoniae in both the co-factor-bound and the apo forms. We demonstrate that the absence of the cofactor thiamine diphosphate results in conformational changes that lead to disordered loops close to the active site that might be important for the design of potent DXPS inhibitors. Collectively, our results provide important structural details that aid in the assessment of DXPS as a potential target in the ongoing efforts to combat antibiotic resistance.


Asunto(s)
Coenzimas , Klebsiella pneumoniae , Pseudomonas aeruginosa , Transferasas , Humanos , Antibacterianos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Transferasas/química , Transferasas/metabolismo , Conformación Proteica , Coenzimas/metabolismo , Vitamina B 6/biosíntesis , Tiamina/biosíntesis , Apoenzimas/química , Apoenzimas/metabolismo , Tiamina Pirofosfato/metabolismo , Dominio Catalítico , Farmacorresistencia Bacteriana
3.
PLoS Pathog ; 19(7): e1011506, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37459366

RESUMEN

In addition to antioxidative and anti-inflammatory properties, activators of the cytoprotective nuclear factor erythroid-2-like-2 (NRF2) signaling pathway have antiviral effects, but the underlying antiviral mechanisms are incompletely understood. We evaluated the ability of the NRF2 activators 4-octyl itaconate (4OI), bardoxolone methyl (BARD), sulforaphane (SFN), and the inhibitor of exportin-1 (XPO1)-mediated nuclear export selinexor (SEL) to interfere with influenza virus A/Puerto Rico/8/1934 (H1N1) infection of human cells. All compounds reduced viral titers in supernatants from A549 cells and vascular endothelial cells in the order of efficacy SEL>4OI>BARD = SFN, which correlated with their ability to prevent nucleo-cytoplasmic export of viral nucleoprotein and the host cell protein p53. In contrast, intracellular levels of viral HA mRNA and nucleocapsid protein (NP) were unaffected. Knocking down mRNA encoding KEAP1 (the main inhibitor of NRF2) or inactivating the NFE2L2 gene (which encodes NRF2) revealed that physiologic NRF2 signaling restricts IAV replication. However, the antiviral effect of all compounds was NRF2-independent. Instead, XPO1 knock-down greatly reduced viral titers, and incubation of Calu3 cells with an alkynated 4OI probe demonstrated formation of a covalent complex with XPO1. Ligand-target modelling predicted covalent binding of all three NRF2 activators and SEL to the active site of XPO1 involving the critical Cys528. SEL and 4OI manifested the highest binding energies, whereby the 4-octyl tail of 4OI interacted extensively with the hydrophobic groove of XPO1, which binds nuclear export sequences on cargo proteins. Conversely, SEL as well as the three NRF2 activators were predicted to covalently bind the functionally critical Cys151 in KEAP1. Blocking XPO1-mediated nuclear export may, thus, constitute a "noncanonical" mechanism of anti-influenza activity of electrophilic NRF2 activators that can interact with similar cysteine environments at the active sites of XPO1 and KEAP1. Considering the importance of XPO1 function to a variety of pathogenic viruses, compounds that are optimized to inhibit both targets may constitute an important class of broadly active host-directed treatments that embody anti-inflammatory, cytoprotective, and antiviral properties.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Humanos , Transporte Activo de Núcleo Celular , Células Endoteliales/metabolismo , Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/genética , Carioferinas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ribonucleoproteínas/metabolismo , ARN Mensajero/metabolismo , Replicación Viral
4.
ChemMedChem ; 17(5): e202100679, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34918860

RESUMEN

The enzymes of the 2-C-methylerythritol-d-erythritol 4-phosphate (MEP) pathway (MEP pathway or non-mevalonate pathway) are responsible for the synthesis of universal precursors of the large and structurally diverse family of isoprenoids. This pathway is absent in humans, but present in many pathogenic organisms and plants, making it an attractive source of drug targets. Here, we present a high-throughput screening approach that led to the discovery of a novel fragment hit active against the third enzyme of the MEP pathway, PfIspD. A systematic SAR investigation afforded a novel chemical structure with a balanced activity-stability profile (16). Using a homology model of PfIspD, we proposed a putative binding mode for our newly identified inhibitors that sets the stage for structure-guided optimization.


Asunto(s)
Eritritol , Fosfatos de Azúcar , Eritritol/análogos & derivados , Eritritol/química , Eritritol/metabolismo , Eritritol/farmacología , Humanos , Fosfatos de Azúcar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...